

Procurement of antibiotics for use in humans and animals

https://www.knowledgehub.org.za/elibrary/surveillance-antimicrobial-resistance-and-consumption-antimicrobials-south-africa-2021

PROCUREMENT OF ANTIBIOTICS FOR HUMAN AND ANIMAL HEALTH (kgs)

	HUMAN TONNAGE PROCURED			ANIMAL TONNAGE PROCURED		
	2018	2019	2020	2018	2019	2020
Antimicrobial						
Broad spectrum	542,308	456,803	541,056	6,933	583,367	553,209
Narrow spectrum	81,872	145,658	263,930	323	13	6
TOTAL penicillins	624,180	602,461	804,987	7,256	583,381	553,214
Streptomycins	375	585	425	1,638	46	8
Tetracyclines	39,552	54,875	57,546	946,715	564,765	782,615
Amphenicols (Chloramphenicol in humans)	11,788	382	3,837	257	33	116
Erythromycin	13,090	7,810	6,376	32	2	1
Macrolides	52,403	49,003	63,807	67,510	93,432	105,278
Cephalosporins	202	142,667	6,295	2,045	2,394	48
Sulfamethoxazole + Trimethoprim*	11,245	914	18,331	1,252	0	1
Fluoroquinolones*	890	29,240	15	-	-	-
Aminoglycosides	984	9,185	1,470	30,615	1	9
Other beta-lactams	62	325	4	226,243	161,485	273,232
Other antibiotics	578,864	932,405	752,459	686,678	992,984	774,232
TOTAL	1,333,634	1,829,851	1,715,552	1,970,241	2,398,521	2,488,754

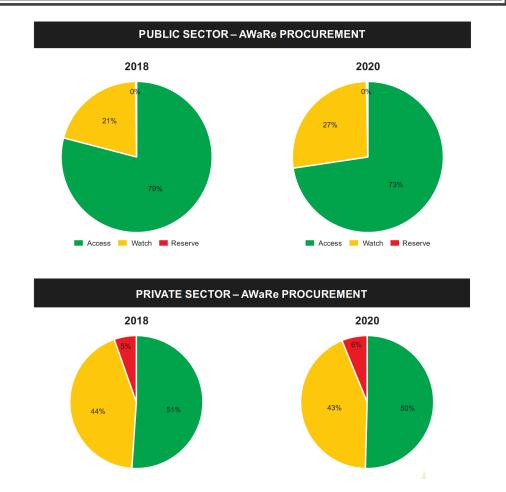
^{*} A complete data set for sulfamethoxazole + trimethoprim and fluoroquinolones were not available at time of publication, and these amounts as they stand are expected to be a great underestimation of actual usage

^{*} Polypeptides and ionophores

Procurement of antibiotics for human health in South Africa based on the WHO AWaRe Index (country target 60% Access)

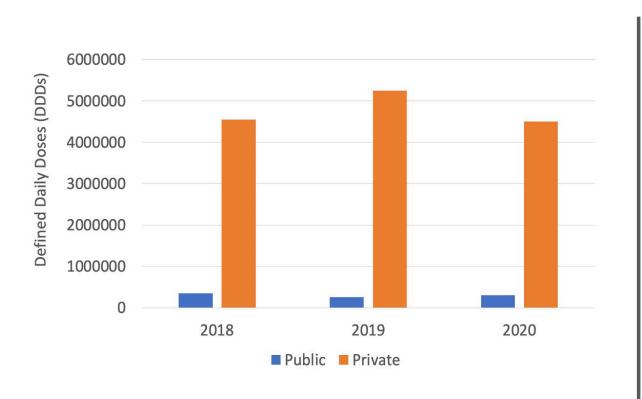
https://www.knowledgehub.org.za/elibrary/surveillance-antimicrobial-resistance-and-consumption-antimicrobials-south-africa-2021

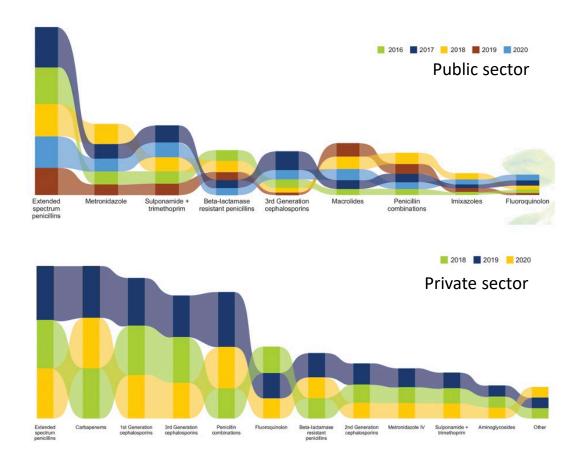
Access	Watch	Reserve
First or second choice empirical	Considered to have a higher	These should be considered as
treatment. These are the core	toxicity or resistance potential,	a last resort for highly selected
set of antibiotics that should	as either first or second choice	patients. These antibiotics
always be available as they	antibiotics. These are only	are prioritised as key targets
offer the best therapeutic	indicated for a limited number of	for antimicrobial stewardship
value, minimising potential for	disorders and require monitoring	programmes and require close
resistance	due to increased risk of AMR.	monitoring.

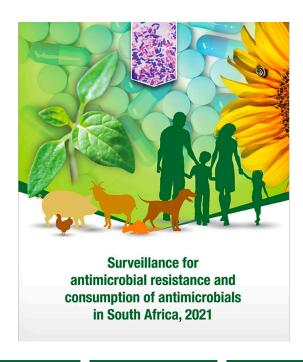

Some examples include:

(The complete lists can be accessed from: https://list.essentialmeds.org/antibiotics/access)

- Amoxicillin
- · Amoxicillin + clavulanic acid
- Ampicillin
- Benzathine benzylpenicillin
- Cefalexin
- Chloramphenicol
- Clindamycin
- Cloxacillin
- Doxycycline
- Flucloxacillin
- 1 IUGIOXAGIIII
- Gentamicin
- Metronidazole
- Sulfamethoxazole + trimethoprim


- Azithromycin
- Cefaclor
- Octable
- Cefepime
- Cefotaxime
- Cefoxitin
- Ceftazidime
- Ceftriaxone
- 0: 0
- Ciprofloxacin
- Clarithromycin
- Doripenem
- Erythromycin
- Kanamycin
- Levofloxacin
- Neomycin
- Piperacillin-tazobactam
- Vancomycin


- Colistin*
- Fosfomycin (injection)
- Linezolid*
- Tigecycline*
- Cefiderocol
- Ceftazidime + avibactam*
- Ceftolozane+tazobactam
- Daptomycin*
- Faropenem
- Imipenem + cilastatin + relebactam
- Meropenem + vaborbactam
- Minocycline*
- Polymixin*
- Tedizolid



Procurement of antibiotics in South Africa based on sector of the health system

https://www.knowledgehub.org.za/elibrary/surveillance-antimicrobial-resistance-and-consumption-antimicrobials-south-africa-2021

Klebsiella pneumoniae

70% BSIs are nonsusceptible to 3rd generation cephalosporins 40% BSIs are nonsusceptible to 1st generation carbapenems

cephalosporinds and to

piperacillin-tazobactam

Pseudomonas aeruginosa

33% BSIs are nonsusceptible to carbapenems 17% BSIs is nonsusceptible to 3rd and 4th generation

Acinetobacter baumannii

Staphylococcus

aureus

17% BSIs are

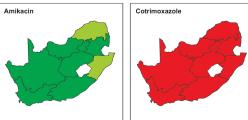
nonsusceptible to

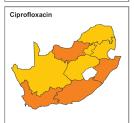
cloxacillin (MRSA)

80% BSI are resistant to carbapenems

Enterococcus faecalis

1.1% BSIs are resistant to vancomycin

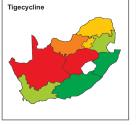

Escherichia coli

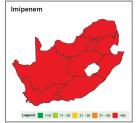

25% BSIs nonsuceptible to 3rd generation cephalosporins 33% BSIs are nonsusceptible to ciprofloxacin

Enterococcus faecium

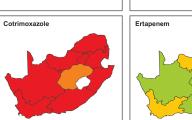
1.3% BSIs are resistant to vancomycin

Escherichia coli

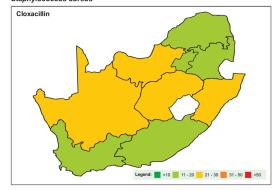




Acinetobacter baumanii

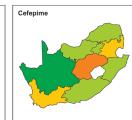


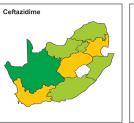
Klebsiella pneumoniae

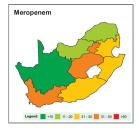


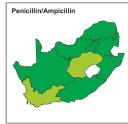
Legend: <10 11 - 20 21 - 30 31 - 50 50

Ciprofloxacin

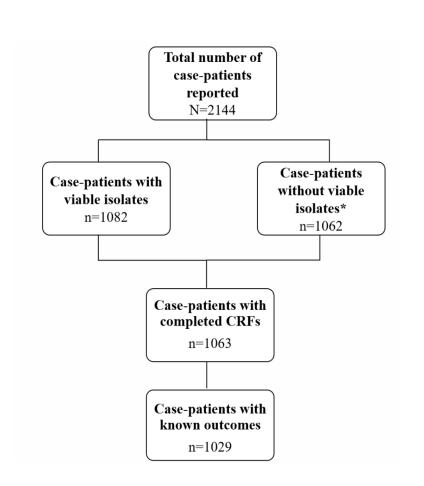

Staphylococcus aureus

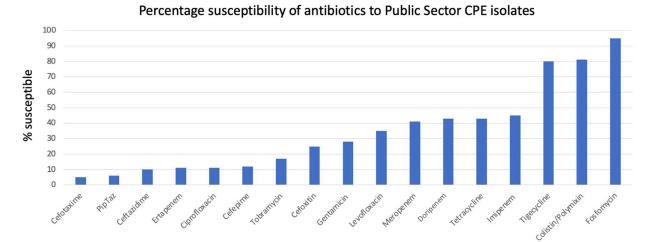



Pseudomanas aeruginosa



Enterococcus faecalis




CRE surveillance in South Africa's public sector tertiary academic hospitals, 2019-2020

Perovic et al. 32nd ECCMID: 23-26 April 2022. Abstract number 01010

CRE in the Public Sector (n=1029)				
Median age	35 years			
In-hospital mortality	36.6%			
Age ≥60 years	aOR 4.53, [95%Cl 2.21-9.28], p<0.01			
Comorbidities	aOR 1.72, [1.17-2.52], p = 0.006			
Altered mental state	aOR 5.36, [3.21-8.92], p<0.001			
Previous antibiotic use	aOR 1.88, [1.27-2.77], p = 0.001			
Bacteria	K. pneumoniae (80%); E. cloacae (6%); S. marcesans (5%); E. coli (4%)			
Number of carbapenemase genes	1 (84.6%); 2 (3.5%); 0 (11.9%)			
Genes	OXA-48-like (76.8%); NDM (21.1%); VIM (1.3%); GES (0.4%; KPC (0.4%)			

Reserve list antibiotics available in South Africa

https://www.who.int/publications/i/item/2021-aware-classification

Registered in South Africa		Not registered		
Used in public sector	Used in private sector	Access via section 21	Unavailable	
Linezolid Tigecycline	Linezolid Tigecycline Ceftazidime-avibactam ZAR 24,667 (\$1,372)* Ceftolozane-tazobactam ZAR 27,999 (\$1,557)* Daptomycin	Aztreonam Colistin Polymixin	Carumonam Cefiderocol – ZAR 110,534 (\$6149)* Ceftaroline Ceftobiprole Dalbavancin Dalfopristin + quinupristin Eravacycline Faropenem Iclaprim Imipenem + Cilastin + relebactam Meropenem + vaborbactam Minocycline Oritavancin Plazomicin Tedizolid	

^{*}Cost for 7 days of treatment – costs courtesy of Mrs Vanishree Naicker, UCT Pharmacy as of 30th Sept 2022

The increasing reality of Difficult-to-Treat Resistant (DTR) Gram-negative infections in South Africa

Image courtesy of Dr Maritz Laubscher

Acinetobacter baumannii complex (ACIBC)

Comments

Tissue, right knee.

Antibiotic/Culture:	ACIBC
Trimethoprim-sulfamethoxazole	R
Ciprofloxacin	R
Ceftazidime	R
Cefepime	R
Gentamicin	R
Tobramycin	R
Amikacin	R
Piperacillin/tazobactam	R
Imipenem	R
Meropenem	R
Tigecycline	I
C. Consition of Tatasandists of D. I	

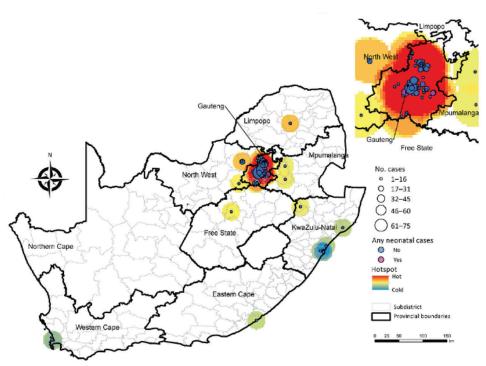
S - Sensitive ; I - Intermediate ; R - Resistant

Organism Acinetobacter baumannii complex

Antibiotic Colistin
MIC >64 ug/mL
MIC interpretation Resistant

Epidemiologic Shift in Candidemia Driven by Candida auris, South Africa, 2016-2017

Erika van Schalkwyk,² Ruth S. Mpembe, Juno Thomas, Liliwe Shuping, Husna Ismail, Warren Lowman, Alan S. Karstaedt, Vindana Chibabhai, Jeannette Wadula, Theunis Avenant, Angeliki Messina, Chetna N. Govind, Krishnee Moodley, Halima Dawood, Praksha Ramjathan, Nelesh P. Govender,² for GERMS-SA


Candida auris is an invasive healthcare-associated fungal pathogen. Cases of candidemia, defined as illness in patients with Candida cultured from blood, were detected through national laboratory-based surveillance in South Africa during 2016-2017. We identified viable isolates by using mass spectrometry and sequencing. Among 6,669 cases (5.876 with species identification) from 269 hospitals. 794 (14%) were caused by C. auris. The incidence risk for all candidemia at 133 hospitals was 83.8 (95% CI 81.2-86.4) cases/100,000 admissions. Prior systemic antifungal drug therapy was associated with a 40% increased adjusted odds of C. auris fungemia compared with bloodstream infection caused by other Candida species (adjusted odds ratio 1.4 [95% CI 0.8-2.3]). The crude in-hospital case-fatality ratio did not differ between Candida species and was 45% for C. auris candidemia, compared with 43% for non-C. auris candidemia. C. auris has caused a major epidemiologic shift in candidemia in South Africa.

Since 2009, when the first case of *Candida auris* infection was identified in South Africa, the number of laboratory-confirmed cases has increased exponentially (I).

Author affiliations: National Institute for Communicable Diseases, Johannesburg, South Africa (E. van Schalkwyk, R.S. Mpembe, J. Thomas, L. Shuping, H. Ismail, N.P. Govender); Vermaak & Partners—Pathcare Patholigists, Johannesburg (W. Lowman); Wits Donald Gordon Medical Centre, Johannesburg (W. Lowman); University of the Witwatersrand, Johannesburg (W. Lowman, A.S. Karstaedt, V. Chibabhai, J. Wadula, A. Messina, N.P. Govender); University of Pretoria and Kalafong Provincial Tertiary Hospital, Pretoria, South Africa (T. Avenant); Netcare Hospitals Ltd, Johannesburg (A. Messina), Lancet Laboratories, Durban, South Africa (C.N. Govind, K. Moodley); University of KwaZulu-Natal, Durban (C.N. Govind, H. Dawood, P. Ramjathan); Grey's Hospital, Pietermaritzburg, South Africa (H. Dawood), National Health Laboratory Service, Johannesburg (V. Chibabhai, J. Wadula, P. Ramjathan)

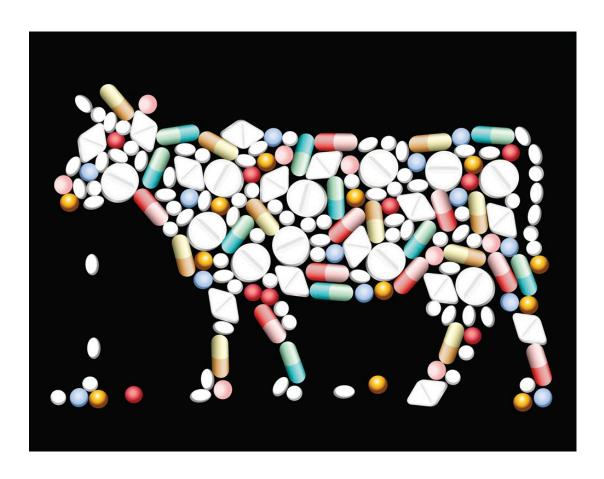
DOI: https://doi.org/10.3201/eid2509.190040

This multidrug-resistant fungal pathogen emerged worldwide, appearing almost simultaneously on 6 continents, causing invasive disease and protracted healthcare-associated outbreaks (2-5). The reported crude case-fatality ratio among patients with invasive C. auris infections is high, although the attributable mortality rate has not been determined (3,6), C. auris persists on surfaces, is transmitted among patients in the healthcare environment, forms biofilms, and resists routinely used environmental cleaning agents (7-10). Candida spp. are a common cause of bloodstream infections and were responsible for 13% (95% CI 6%-26%) of healthcare-associated bloodstream infections according to a 2015 US point-prevalence survev (11), C. parapsilosis was the dominant species causing candidemia according to a national survey in South Africa conducted during 2009-2010 (12). Patients at risk for candidemia in general are the critically ill (especially premature neonates) and those with serious underlying illnesses (e.g., diabetes mellitus and hematologic malignancies), prior or prolonged exposure to broad-spectrum antimicrobial drugs, and invasive medical and surgical interventions (13). Previously described characteristics associated with candidemia among adults in South Africa included abdominal surgery, trauma, diabetes mellitus, cancer, and HIV infection (14). C. auris is thought to occupy a similar niche in the healthcare environment as C. parapsilosis because both organisms colonize human skin and adhere to healthcare surfaces and devices. Clinical risk factors for C. auris infection would be expected to be similar to those for C. parapsilosis infection, but these factors are largely reported from several small case series. Risk factors for C. auris candidemia (compared with other species) among patients admitted to 27 intensive care

Figure 3. Location and number of 741 *Candida auris* candidemia cases at 79 hospitals, including 7 hospitals with neonatal cases, South Africa, 2016–2017. Location data were missing for 53 cases.

Preliminary results from this study were presented at the Federation of Infectious Diseases Societies of Southern Africa (FIDSSA) conference (oral abstract no. 8,382); November 9–11 2017. Cape Town. South Africa.

²These authors contributed equally to this article.

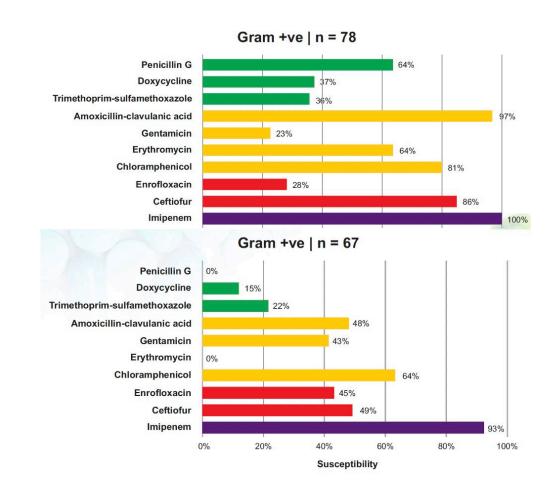

Despite increasing procurement of antibiotics in animals, there has been a reduction in use, 2014-2020

Overall Amount: Growth Promotion + Therapeutic Use	2014	2016	2020
Antimicrobial Class	All animal species (kg)	All animal species (kg)	All animal species (kg)
Aminoglycosides	14 925	18 848	14 078
Amphenicols	3 530	2 958	4 114
Arsenicals	0	0	0
Cephalosporins (all generations)	418	826	297
1-2 gen. cephalosporins	408	248	250
3-4 gen cephalosporins	10	578	47
Fluoroquinolones	0	6 859	2 822
Glycopeptides	0	0	0
Glycophospholipids	0	303	277
Lincosamides	0	159	0
Macrolides	47 757	31 879	15 929
Nitrofurans	0	0	0
Orthosomycins	3 733	1 788	1040
Other quinolones	3 453	0	10 385
Penicillins	16 737	10 055	16 393
Pleuromutilins	7 745	4 481	3 187
Polypeptides	295	140	78
Quinoxalines	3 839	0	31 383
Streptogramins	0	533	0
Sulfonamides (including trimethoprim)	39 264	28 708	35 289
Tetracyclines	231 392	158 519	194 836
Others	469 037	159 451	77 151
Total kg	842 125	425 507	407 428

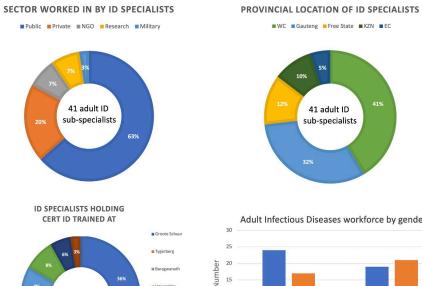
- Tonnage procured ‡ quantities sold and finally used
- Decline in animal use = phasing out AGPs since 2019
- Multinational pharmaceuticals voluntarily started phasing out claims for prophylaxis and AGP in package inserts
- Registrar of Stock Remedies and SAAHA agreed to remove all claims for antibiotics of prophylaxis and AGP, effectively eliminating medically important antibiotics for growth promotion in South Africa

Limited National Animal ABR Surveillance Reporting

https://www.knowledgehub.org.za/elibrary/surveillance-antimicrobial-resistance-and-consumption-antimicrobials-south-africa-2021

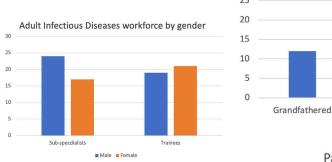


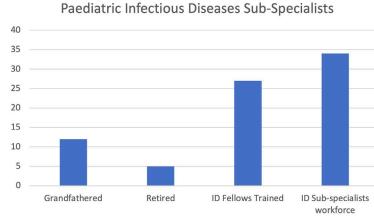
	Bovine Respiratory Tract Infections			
	Mannheimia haemolytica	Pasteurella multocida	Histophilus somni	Salmonella phimurium
Penicillin	1/20(5%)		1/21(5%)	2/2
Ampicillin	1/20(5%)		1/21(5%)	
Amoxycillin				
Amoxycillin/ Clavulanic acid				
Cephalosporin 1st gen				2/2
Cephalosporin 2 nd gen				2/2
Cephalosporin 3 rd gen				
Tetracycline	2/20(10%)	18/32(56%)	7/21(33%)	
Fluoroquinolones				
Erythromycin	6/20(30%)	17/32(53%)	3/21(14%)	2/2
Clindamycin/ lincomycin	20/20(100%)	32/32(100%)	14/21(67%)	2/2
Gentamicin		4/32(13%)	2/21(10%)	2/2
Amikacin	3/20(15%)	12/32(38%)	7/21(33%)	2/2
Kanamycin	3/20(15%)	5/32(16%)	13/21(62%)	2/2
Florfenicol	1/20(5%)	1/32(3%)		
Sulfamethoxazole/ trimethoprim	2/20(10%)	2/32(6%)	3/21(14%)	
Tilmicosin	1/20(5%)	13/32(41%)	2/21(10%)	
Tildipirosin		12/32(38%)	2/21(10%)	
Gamithromycin		12/32(38%)	1/21(5%)	
Ceftiofur				
Cefquinome				

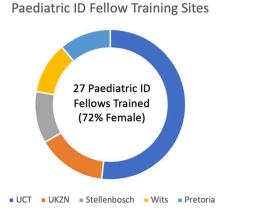

ABR in horses from a single hospital in WC

https://www.knowledgehub.org.za/elibrary/surveillance-antimicrobial-resistance-and-consumption-antimicrobials-south-africa-2021

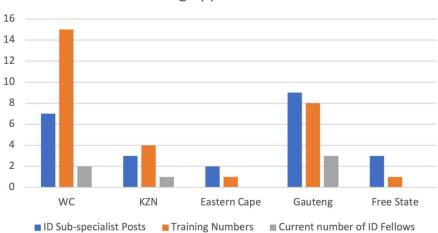
Category	Definitions
Category A - Avoid	 Antibiotics in this category are not authorised as veterinary medicines in South Africa Should not be used in food-producing animals May be given to companion animals under exceptional circumstances
Category B - Restrict	 Antibiotics in this category are critically important in human medicine and use in animals should be restricted to mitigate the risk to public health Should be considered only when there are no antibiotics in Categories C or D that could be clinically effective Use should be based on antimicrobial susceptibility testing, wherever possible
Category C - Caution	 For antibiotics in this category there are alternatives in human medicine For some veterinary indications, there are no alternatives belonging to Category D Should be considered only when there are no antibiotics in Category D that could be clinically effective
Category D - Prudence	 Should be used as first line treatments, whenever possible As always, should be used prudently, only when medically needed

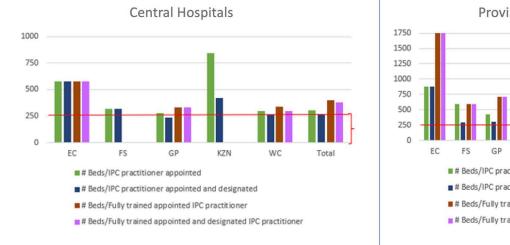

The Infectious
Diseases
Specialist Human
Resources
Gap in South
Africa

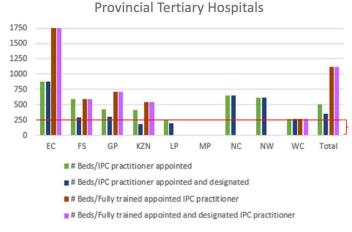


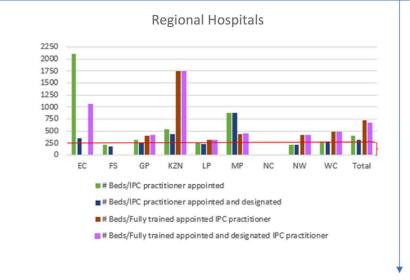

40 ID Fellows

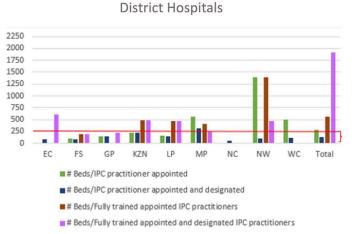
Since 2007


■ UKZN




Missed training opportunities in Adult ID




The Infection Prevention Control Human Resources Gap in the South African Public Sector

Lack of Resilience of South Africa's AMR Response

- The commitments made by stakeholders at the Ministerial Summit to combat AMR in 2014 have largely not been met
- South Africa's National Action Plan remains unfunded
- The workforce required to deliver the national AMR implementation plan (& pandemic preparedness) is deficient across the board
- Our response in human health remains too hospital-based and has not strengthened a community response
- Surveillance of AMR in food production systems (risking food security) and in companion animals, is weak
- The MAC-AMR members are acting as advisors and supporters of implementation – requires decoupling

Thank you to the countless healthcare professionals in South Africa who support the country's response to AMR on a daily basis

