

Webinar

Targeted Next-Generation Sequencing:
A game changer in drug resistance detection

Date: 24 April 2025

Time: 13h00 – 14h30

Thank you for your interest in this webinar

- The chat has been disabled for the attendees.
- Please use the Q&A box to post questions for our panel of experts.
- The session is recorded and will be shared with all the presentations on the Knowledge Hub – www.knowledgehub.health.gov.za/lms

Prof N Ndjeka

Prof Ndjeka serves as the Chief Director TB Control and Management, under the National Department of Health in South Africa.

Under his leadership, there has been a decline in the number of cases of DR -TB in South Africa and a remarkable improvement in proportion of patients successfully treated for DR- TB.

Programme Director: Prof N Ndjeka

Time	Duration	Торіс	Presented By:
13h00 - 13h05	5 min	Opening & Welcome	Prof. Norbert Ndjeka
13h05 - 13h15	I0 min	Aims and objectives of webinar	Prof. Norbert Ndjeka
13h15 - 13h55	40 min	The introduction of targeted Next-Generation Sequencing (tNGS)	Dr ShaheedV Omar
13h55 - 14h25	30 min	Discussion (Q&A)	Prof. Norbert Ndjeka
14h25 - 14h30	5 min	Vote of thanks	Prof. Norbert Ndjeka

Dr Shaheed Vally Omar is a Medical Scientist, currently serving as the Head of the Centre for Tuberculosis at the National Institute for Communicable Diseases a division of the National Health Laboratory Service in South Africa.

Dr Shaheed has facilitated the seamless implementation of cutting-edge TB diagnostics into the routine laboratory, thereby strengthening standard practices and augmenting the efficacy of tuberculosis control measures.

Panellist	Facility
Dr Samantha Zealand-Smith	Jose Pearson TB Hospital (EC)
Dr Xavier Padanilam	Sizwe Hospital (GP)
Dr Nalini Singh	King Dinizulu Hospital (KZN)
Dr Hannetjie Ferreira	Tshepong Hospital (NW)
Dr C Duran	West End TB Hospital (NC)
Dr Neelum Mohamood	Brooklyn Chest TB Hospital (WC)

Thank you for attending this webinar

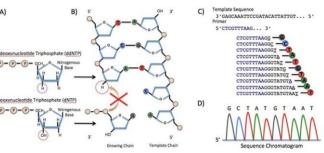
The session recording and all the presentations will be shared on the Knowledge Hub – www.knowledgehub.health.gov.za

THANK YOU

[tNGS] to enhance management of DR-TB patients In South Africa

24th April 2025

Dr Shaheed V Omar
Centre Head
Centre for Tuberculosis
National & Supranational TB Reference Laboratory
NICD/NHLS



Division of the National Health Laboratory Service

Next-Generation Sequencing

- Over the past few years Next-generation Sequencing has established itself in the infectious disease's domain
 - Feasibility of equipment minimal infrastructural requirements
 - Uncomplicated workflows
 - Reasonable cost and improved turnaround times
- Next-Generation Sequencing (NGS) is a technology that rapidly reads and analyses genetic material to identify changes or patterns in DNA or RNA, helping us understand diseases, traits, or organisms at a molecular level.
- NGS is essentially NAATS on steroids, since it is able to explore larger portions of the genome compare to PCR

INSIGHTS OBTAINED THROUGH NGS

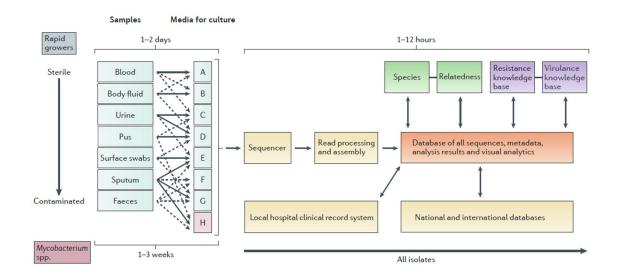
Accurate characterisation of nucleotide-level genetic polymorphisms.¹⁰

Detection of mixed infection and heteroresistance down to 3% subpopulations (inaccessible by other rapid molecular tests).¹⁴

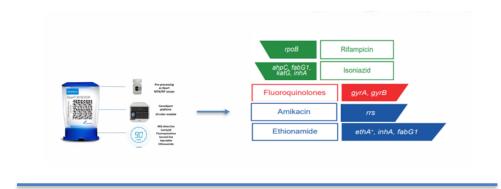
Detailed sequence information for multiple gene regions or whole genomes.¹⁰

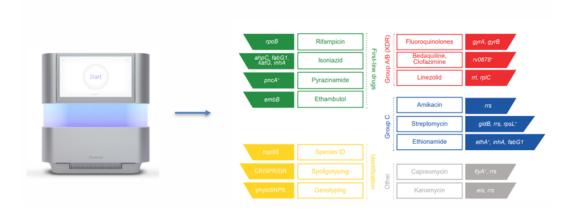
Genotyping and spoligotyping of Mycobacterium tuberculosis complex (MTBC) strains.¹⁴

Detect resistance to a wide range of first and second-line antituberculosis drugs. 10,14



Differential detection of mycobacterial species with clinical relevance. 14,15




NGS Changing the paradigm

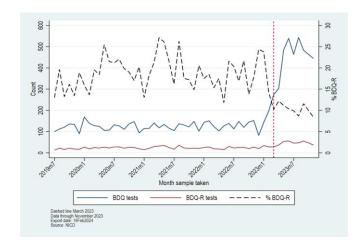
Current TB Diagnostics vs tNGS for Resistance Detection

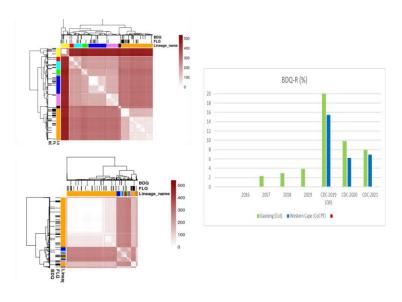
Drug	pDST	Genes associated with resistance	Rapid Diagnostic	NGS
RIF	Yes Suboptimal sensitivity for disputed mutations	rpoB, rpoA, rpoC	yes	High sensitivity and identification of silent and disputed mutations
INH	Yes	katG, inhA, oxyR-ahpC, fpbC, fabD, kasA, accD, ndh, fadE24, nat, iniA, iniB, iniC, mabA, srmR, nhoA	yes	High sensitivity
ЕМВ	Yes - Poor accuracy	embB, embC, embA, embR iniA, iniB, iniC, manB, rmlD, rmlD	yes	High sensitivity
SLI	Yes	rrs, tlyA, rpsL, gidB, eis	yes	High sensitivity
FLQ	Yes	gyrA, gyrB	yes	High sensitivity
PZA	Not recommended	pncA, rpsA	yes (high complexity)	High sensitivity
ETH	Not recommended	inhA, ethA, ethR, ndh,mshA, fabG1	Yes (limited to shared target with INH)	Moderate sensitivity
BDQ	yes	atpE, Rv0678 (pepQ, Rv1979c)	no	Moderate sensitivity
PAS		folC, thyA, ribD	no	
LZD	Live the of the forms of the	23SrRNA, rplC		I too the all to form and to a
DLM	Limited information	ddn, fbiA/b/c, fgd1/2		Limited information
Pa		ddn?		

WHY SOUTH AFRICA plans to implement tNGS?

NEED: Only available RAPID technology to support laboratory guidance for BPAL/L Regimen with emerging BDQ resistance (~6.5%)

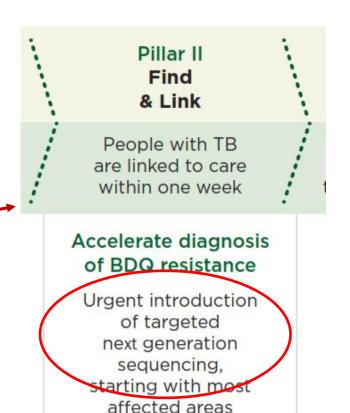
Direct sequencing for samples


CURRENT DST TAT = 56 days ENVISAGED TAT = 7-10 days

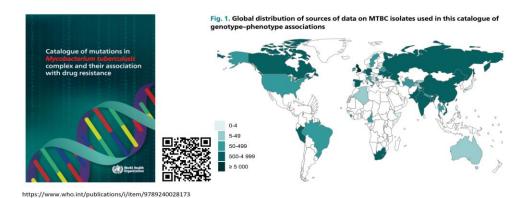


Cost benefit

Reduced labor cost


Optimized laboratory space vs pDST

National Plan to Address emerging BDQ resistance



RAPID Diagnostics - Next GENERATION

^{*}images of example instruments for illustrative purposes only

41137 clinical isolates with pDST and WGS

Use of targeted next-generation sequencing to detect drug-resistant tuberculosis

Rapid communication, July 2023

Capability

- Sputum & Culture based
- 3-5 day turnaround time
- Comprehensive resistance profiling upto 15 TB drugs
- Supported by WHO Mutation Catalogue
- Limitation high complexity

Performance

- Pooled sensitivity > 95%
 - RIF, INH, FLQ, EMB, PZA
- Acceptable sensitivity ~70%
 - BDQ, LZD & CFZ

NGS solutions recommended (selected drugs for each)

- Deeplex Myc-TB (Genoscreen) Illumina platform
- NanoTB (Oxford Nanpore) Minion platform
- Tbseq (Sheng Ting Biotech)

tNGS Performance (Seq&Treat multi-country evaluation)

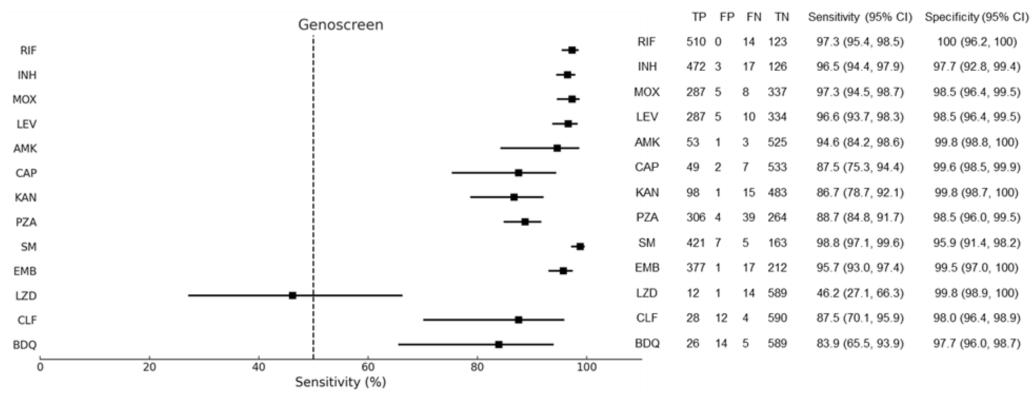
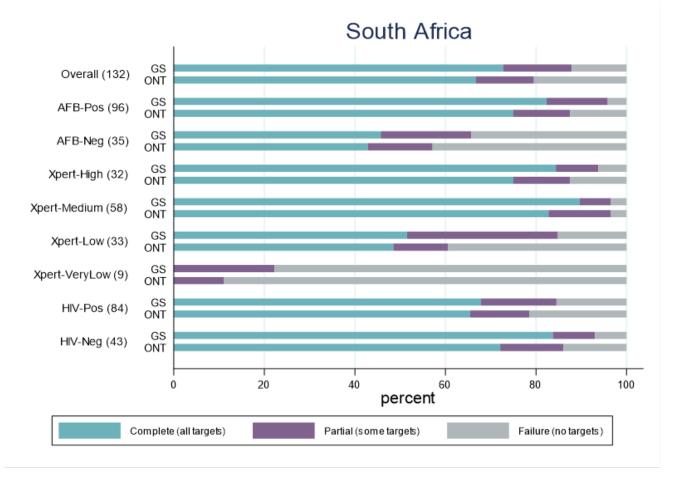
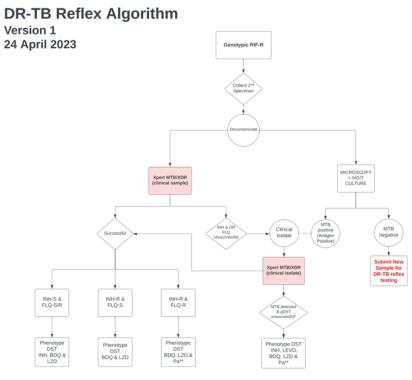
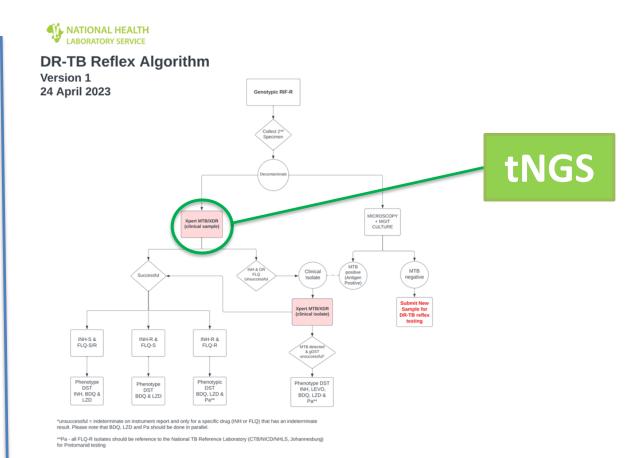



Figure 4. Sensitivity and specificity of Genoscreen end-to-end tNGS solutions for detection of drug resistance compared with a composite reference of phenotypic drug suceptibility testing and whole-genome.


tNGS Success Rate (Seq&Treat: South Africa ONLY)

Sequencing Success on RSA samples by bacterial load proxies (AFB Smear status, GeneXpert Results Category, and HIV status). Total number of samples in each category are indicated in parentheses on Y-axis.


Current vs Improved DR-TB Reflex Algorithm incorporating tNGS

*unsuccessful = indeterminate on instrument report and only for a specific drug (INH or FLQ) that has an indeterminate result. Please note that BDQ, LZD and Pa should be done in parallel.

**Pa - all FLQ-R isolates should be reference to the National TB Reference Laboratory (CTB/NICD/NHLS, Johannesburg) for Pretomanid testing

Laboratory Reporting: Current vs tNGS

CURRENT

Extended Drug Sensitivity Testing - MGIT Culture Based:

Amikacin	Sensitive
Bedaquiline	Resistant
Clofazimine	Resistant
Ethambutol	Sensitive
Isoniazid High	Resistant
Levofloxacin	Sensitive
Linezolid	Sensitive
Moxifloxacin Low	Sensitive
Moxifloxacin High	Sensitive
p-aminosalicylic acid	Sensitive
Pretomanid	Sensitive
Rifabutin	Sensitive

tNGS

Targeted Next-Generation Sequencing Mycobacterium tuberculosis complex

Drug: gDST interpretation:

Rifampicin Resistant Isoniazid Resistant Pyrazinamide Resistant Ethambutol Resistant Fluoroquinolone Sensitive Linezolid Sensitive Bedaquiline Sensitive Clofazimine Sensitive

Amikacin Uncertain significance

tNGS Implementation (Summary of Activities)

Phase 1 (October 2024) –National Validation – updated methodology

Phase 2 (Q2 2025) – National Implementation – Centralized Model (NTBRL)

Phase 3 (Q2 2026) – Decentralization (Tier 3 Labs – potentially 3)

PHASE 1 - Laboratory validation of next-generation sequencing for routine genotypic Drug Susceptibility Testing in South Africa for Drug Resistant Tuberculosis — October 2024

Objective	Endpoint
	PRIMARY
1. To validate and compare diagnostic accuracy of next generation sequencing including test success rate against the current recommendation and standard of care	Point estimates of sensitivity and specificity with 95% confidence interval for resistance detection to each drug
2. To assess technical performance, including non-determinant rates, ease of use and other system operational characteristics i.e. turnaround time	Non-determinate rates (errors, failed sequencing etc) for resistance detection to each drug. Summary of technical performance characteristics such as ease of use metrics, and other operational characteristics (including TAT).
	SECONDARY
3. To evaluate whether the NGS approach is cost-effective and decentralization capable to selected laboratories to service national demand from a health care system perspective.	Conduct a cost outcomes analysis that estimated the cost per person and cost per successful result for susceptibility testing in those diagnosed with RR-TB under the intervention arm compared to the standard of care.

- Ethics Approval DEC 2024
- NHRD Approval JAN 2025
- Study Sites
 - Selected sites
 - Jose Pearson
 - Nkqubela
 - Sizwe
 - King Dinizulu
 - West End
 - Tshepong
 - Brooklyn Chest
- Testing site preparedness Complete
- Logistics being finalized

PHASE 2 - Next-Generation Tuberculosis Care: Programmatic implementation of WHO recommended targeted Next Generation Sequencing (tNGS) for rapid genotypic drug susceptibility profiling in patients diagnosed with rifampicin/isoniazid resistance (CENTRALIZED MODEL) - Q2 2025

- Develop infrastructure and human resource capacity for programmatic 1. implementation of a WHO-recommended end-to-end tNGS solution (Deeplex)
- Conduct phased provincial implementation of tNGS at the National TB 2. Reference Laboratory as part of the DR-TB reflex algorithm for all RR-TB patients and specific groups of rifampicin susceptible (RS)-TB patients.
- 3. Determine the most optimal network placement of the technology to support DR-TB reflex testing with decentralization to tier 1 referral laboratories (currently performing phenotypic DST n=6)
- Evaluate the impact of including tNGS as part of the SOC in the DR-TB reflex testing algorithms compared with standard of care alone (Xpert MTB/XDR & pDST) in terms of:
 - Time to resistance detection

- Indeterminate rates (failure per gene target per drug /culture-pDST b. contamination).
- Determine the impact of tNGS vs. pDST on patient-important outcomes, including:
 - Time to treatment with at least 3 effective drugs with susceptibility documented for BDQ or LZD-resistant patients. Susceptibility as defined by the reference method
 - Time to culture conversion and proportion achieving culture conversion by month3
 - Proportion with an unsuccessful outcome or died

Core components of tNGS readiness

SOP created and Algorithm developed updated in and reviewed accordance with

Procurement plan and supply security

Scale-up documentation

ssessments defined

LIS input and recording templates

tNGS Costing and Performance

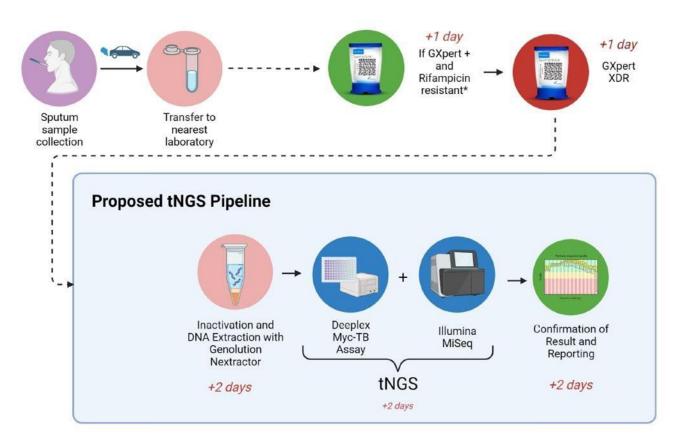
tNGS IS LIKELY TO COST LESS THAN THE SOC DST ALGORITHM

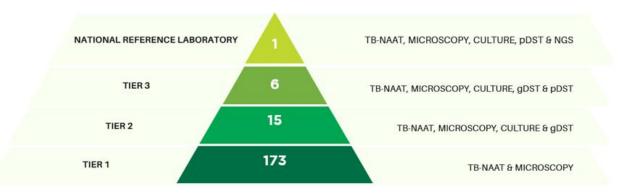
	Scenario 1	Scenario 2	Scenario 3	Scenario 4
<u>Inputs</u>				
Annual tNGS testing volumes	10000	10000	10000	10000
Number of sites	1	3	4	6
Types of instruments	NextSeq 1000	NextSeq 1000	NextSeq 1000	NextSeq 1000
Objective	Goal 2: minimise cost	Goal 1: minimise TAT	Goal 1: minimise TAT	Goal 1: minimise TAT
Currency for results	\$	\$	\$	\$

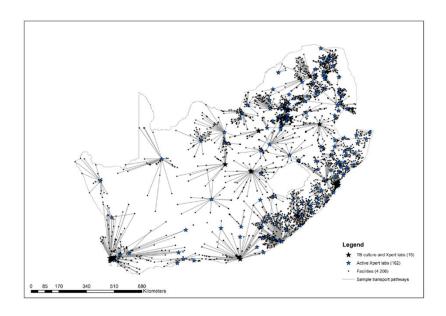
Results .				
Number of instruments	1	3	4	6
% sequencer loading capacity (per run)	100%	18%	13%	9%
Total annual cost	\$1,017,883	\$2,023,445	\$2,669,657	\$5,410,462
Sequencing reagent cost	\$6	\$78	\$128	\$373
Sequencing TAT (days)	7	7	7	7
Cost per test	\$102	\$202	\$267	\$541

SOC comparator				
Total cost	\$1,368,110	\$1,368,110	\$1,368,110	\$1,368,110
Cost per test	\$137	\$137	\$137	\$137

Proposed Workflow & Considerations




Table 2. Costs associated with the setup of tNGS in South Africa


Workforce	Training of staffContinued employment of staff and salary packages
Infrastructure	 Electricity and backup power Maintenance and service Internet and phoneline services Cloud services and storage Floor/building/office space
Sequencing	 Initial purchase of Illumina MiSeq or iSeq Service-level agreement for sequencing platform Deeplex Myc-Tb Kits Miscellaneous consumables
Location	Ideal rollout would cover nine labs (one for each province).

PHASE 3 - Next-Generation Tuberculosis Care: Programmatic implementation SCALE UP (DECENTRALIZATION) – Q4 2025

Decentralization to ~3 sites for National testing

- Decentralize and replicate infrastructure to support National routine diagnostic testing for all RR-TB
- Staff capacitation and training

Take Home Messages

- The implementation of targeted NGS is an exciting step forward in how we diagnose and manage drugresistant TB.
- tNGS improves the time of resistance detection considerably compared to culture-based DST
- tNGS addresses important gaps in the diagnosis of resistance to new/repurposed drugs such as Bedaquiline
- This will inturn provide Health Care Workers with comprehensive resistance information to adequately of DR-TB patients

