EFFECTIVE VACCINE MANAGEMEN

Training for frontline healthcare workers

the People of Japan

SAVIC Team: Module development and moderation

Prof Hannelie Meyer Modules 1 & 10

Mr Kesentseng Mahlaba Modules 2 & 3

Dr Mncengeli Sibanda Modules 5, 6 & 7

Prof Rose Burnett Moderator

Dr Sophy Moloko Module 8

Dr Zeenat Ismail Moderator

Aims of EVM training

To equip frontline healthcare workers with knowledge and guidance on good EVM practices, in compliance with legislation for vaccine logistics and supply

To provide trained frontline healthcare workers with the ability to assess and monitor vaccine supply chains and help improve the supply chain performance

To establish high standards of performance to ensure reliability, quality and availability of vaccines and ancillary supplies when and where needed

- To strengthen quality management practices through the use of SOPs, assessments & development of quality improvement projects
- To provide frontline healthcare workers with job aids for point of care decision-making
- To build capacity in terms of EVM training for master trainers

TO W

Frontline healthcare workers
(vaccinators, pharmacy staff and depot personnel)
responsible for the management of vaccines
in public and private sectors

Mode of Delivery

Requirements for Online Participants

- Computer system (desktop, laptop, or tablet) running on a recognised operating system (Windows or Mac OS)
- 2. Internet access
- 3. Email address
- 4. Soundcard with microphone and speakers
- 5. Minimum computer literacy skills

Data Free

Training modalities

Individual

Individual online self-learning → flexible study hours (distance learning)

Master trainer

On-site training for pre-service and in-service settings

Classroom training

Access the Course

.

Abbreviations and Acronyms

For Download from the Landing Page

ABBREVIATIONS AND ACRONYMS

This section contains the abbreviations and acronyms applicable to all modules of the EVM training.

AEFI Adverse events following immunisation

AFP Acute flaccid paralysis

BCG Bacillus Calmette–Guérin bOPV Bivalent oral polio vaccine

CCE Cold chain equipment

CCEI Cold chain equipment inventory

CCM Cold chain monitor

CHCs Community Health Centres
COVID-19 Coronavirus disease 2019

CPD Continuing professional development

DDV Direct delivery

DHIS District Health Information System

EML Essential Medicines List

EPI Expanded Programme on Immunisation

EPI-SA Expanded Programme on Immunisation in South Africa

EVDS Electronic Vaccination Data System

EVM Effective Vaccine Management

FEFO First-expiry-first-out

FIFO First-in-first-out

GPP Good Pharmacy Practice

HCRW Healthcare risk waste

HepB Hepatitis B

HCWs Healthcare workers

Hib Haemophilus influenzae type b

HPCSA Health Professions Council of South Africa

HPV Human papillomavirus

IPC Infection prevention and control

IPM Inspection and preventive maintenance

IPV Inactivated polio vaccine

KPIs Key performance indicators

MCQs Multiple choice questions

MDVP Multi-Dose Vial Policy

MMR Measles, mumps and rubella

NAGI National Advisory Group on Immunisation

NCL National Control Laboratory

NDoH National Department of Health

NEMLC National Essential Medicines List Committee

NHI National Health Insurance

NNT Neonatal tetanus

NSC National Surveillance Centre

OPV Oral polio vaccine

PCM Phase change material

PCV Pneumococcal conjugated vaccine
PFMA Public Finance Management Act

PHPM Public Health Pharmacy and Management

PQS Performance, quality, and safety

RTMS Remote Temperature Monitoring Devices

RTMS Remote Temperature Monitoring Systems

RV Rotavirus vaccine

SA South Africa

SAHPRA South African Health Products Regulatory Authority

SANCLBP South African National Control Laboratory for Biological Products

SANC South African Nursing Council

SAPC South African Pharmacy Council

SAVIC South African Vaccination and Immunisation Centre

SIAs Supplementary immunisation activities

SLA Service level agreement

SMU Sefako Makgatho Health Sciences University

SOPs Standard Operating procedures

SVS Stock Visibility System

Td Tetanus and reduced strength of diphtheria vaccine

TT Tetanus toxoid

UNICEF United Nations Children's Fund
VPD Vaccine preventable diseases

VVM Vaccine Vial Monitor

WHO World Health Organization

WIC Walk in cold rooms
WIF Walk in freezers

Glossary of Terms

For Download from the **Landing Page**

GLOSSARY OF TERMS

This section contains the glossary of terms applicable to all modules of the EVM training.

Term	Definition
Active cold chain	Externally or on-board powered, to maintain a temperature-controlled
systems	environment inside an insulated enclosure under thermostatic regulation.
Adverse event	Any untoward medical occurrence that may present after immunisation but
following	which does not necessarily have a causal relationship with the usage of the
immunisation	vaccine.
Audit	Is the on-site verification activity, such as inspection or examination, of a
	process or quality system, to ensure compliance to requirements.
Average	This is the average number of units used over a given period, (usually one
consumption	month) and determines how much stock should be ordered (3 to 6 months'
	usage is usually used to calculate average; this is different for seasonal stock
	like flu vaccine)
Average daily	Average number of vaccines that are issued on a daily basis.
consumption	
Average monthly	Average number of vaccines used per month, adjusting for stock-outs.
consumption	
Cold chain	The system of transporting and storing vaccines while maintaining the
	recommended temperature
Cold chain breach	A cold chain breach occurs when storage temperatures are outside the
	recommended range (usually +2 °C to +8 °C) for a specified period.
Cold chain capacity	The temperature-controlled space needed at a vaccine store or service-
	delivery point, to store or distribute the required volumes of vaccines and
	diluents.
Cold chain	Equipment used to store and transport temperature-sensitive products at
equipment	the proper temperature during each stage of the supply chain.
Cold chain	A record of the quantities, types and characteristics of the cold chain
equipment	equipment deployed in a country or other administrative unit.
inventory	
Cold chain	The management of medicines that must be maintained within a specified
management	temperature range from the time of manufacture, through transportation
-	and delivery to health establishments until their administration to clients
Cold life	The empty container is stabilized at +43°C and loaded with icepacks. Cold
	life is measured from the moment when the container lid is closed until the
	temperature of the warmest point in the vaccine storage compartment first
	reaches +10°C, at a constant ambient temperature of +43°C.
	•
Conditioned ice	Ice packs that are removed from the freezer and allowed to remain at room

llar monitoring of risks, and implementation of

and recording of the nt of use. This provides and/or downloading the age. Also known as a

pically complying with with tap water or with

ded with coolant packs of 24 hours. Cool life is er is closed, until the e storage compartment ure of +43°C.

ty and/or performance

ent from routine use peratures or is beyond from the health facility be arranged according

tra-low temperatures in cordings for a specified

d personal protective ne intention of retrieval,

with international or inurer. The device records re-set visual alarms to ds of the vaccine being

he strength and other

mpartment remains at

lining surrounding the er coolant. When the

and -20°C before use. tenance.

to measure impact of

m/freezer/refrigerator)

ccine compartment of a the maximum ambient appliance is rated, after e freezers, the holdover

keeps the refrigerator

ctionality and prevent

ds the achievement of formance in terms of

n used for inventory

r a specific objective.

eipt of the order at the

th stock levels being ufficient stock until the

d 12 hours.

level of stock at which

data, procedures, and guide interventions

ire that the demand at

tion tool used by the Ith to provide visibility quipment and improve

to fulfil various roles in ation, warehousing, or

of vaccine or diluent in includes the vaccine or ary packaging material ive temperature control. cold boxes (>4 litres) or

nser, or tube containing

rectly from a national or

ies aimed at improving

uct or service meets the olves all activities that blished standards.

cesses and systems that

the volume of vaccines calculating the difference it stock level, considering

s the ordering of an item cility is met, and is also

rdered at each recording quantity'.

shment from a supplier. tions, routes, and drivers and fulfil every order in

delivery of the vaccines. t cost-effective route by to reach a set of planned n transporting vaccines

es, with the purpose of

prevent stock outs and is lied by the average lead gainst major fluctuations

ormula to protect against and lead time.

4

primary container or more vials or vaccine

a service provider that rials or service quality and communication formal agreement.

ned to ensure that a t and uniform manner.

anagement portal (SVS es, vaccines and other

information between ovement and storage of

ilities, or the time until system.

to improve their own a respectful and nonvisits as an opportunity

medicine is exposed to orage and/or transport. and recording of the nt of use. This provides nd/or downloading the

ondary cartons, and is

as "all products which nperatures below room are normally stored

rier: the actual volume by the equipment

used as a frozen water-

5

3

EVM Glossary of Terms (2024)

2

Training Materials

Printed EVM Job Aids Distributed by UNICEF

Posters of key **EVM** concepts

Desk Top Flip Charts

Structure of modules

2 hours of learning per module

PART 1

Pre-module quiz: Multiple-choice questions, based on the module content

±10 minutes

15 min time limit
One attempt
Score displayed

PART 2

- Lecture video i.e. PowerPoint® slide deck with voice recording
- Transcript, corresponding to voice recording of the lecture video
- Folder with resources and supporting documents in PDF format, videos
- Scenario or case study with questions

±25 minutes

Lecture video and transcript

 \pm 35 minutes

Self-learning based on resources provided

± 30 minutes
Case study
with

questions

PART 3

Post-module
assessment:
Multiple-choice
questions, based on
the module content

±10 minutes

No time limit
Multiple attempts
Minimum 80%

PART 4

Module evaluation

±10 minutes

CPD Accredited

To qualify for a CPD certificate

- 1. Successfully complete ALL modules (all learning activities)
- 2. Obtain a minimum score of 80% for ALL post-module assessments
- 3. Complete the module evaluation for ALL modules

.

INTRODUCTION TO EFFECTIVE VACCINE MANAGEMENT

On successful completion of this module, you will be able to:

- 1. Understand the importance of EVM
- 2. Describe the minimum standards for management of the entire vaccine supply chain
- 3. Describe an EVM assessment using a questionnaire based on the EVM assessment criteria
- 4. Identify challenges within the immunisation supply chain
- 5. Facilitate equitable distribution of resources to mitigate identified challenges within the immunisation supply chain

elcome to Mod

Prof Hannelie Meyer

Need to strengthen immunisation supply chains

Vaccine supply chains must prepare for increasing:

✓ Complexity

✓ Storage capacity

✓ Investment

Inevitable challenges

Benefit of strong immunisation supply chains

Strong immunisation supply
chains enable delivery of
life-saving vaccines to every
person when needed, no matter
where they are

A world where everyone,
everywhere, at every age
... fully benefits from vaccines
... for good health and well-being

EVM assessment framework

CRITERIA

Operational or management functions that health facilities must perform

CATEGORIES

Necessary inputs, outputs and performance of health facilities

Organised according to applicability at the supply chain level of health facility being assessed

REQUIREMENTS

Attributes that a well-functioning immunisation supply chain must have

QUESTIONS

Means of ascertaining whether requirements have been met

framework defines
the way in which
vaccine supply
chain systems are
assessed

Criteria for EVM assessment

Main components: 19 EVM criteria

Each of the modules will focus on specific EVM facility operations criteria and/or **EVM** facility management criteria

	EVM criteria			Modules									
	Facility operations		1	2	3	4	5	6	7	8	9	10	
	E1	Vaccine arrivals											
ı	E2	Temperature management											
ı	E3	Storage and transport capacity											
	E4	Facility infrastructure and equipment											
	E 5	Maintenance											
ı	E6	Stock management											
	E7	Distribution of vaccines and dry goods											
	E8	Vaccine management											
	E9	Waste management											
	Facility management		1	2	3	4	5	6	7	8	9	10	
ı	M1	Annual needs forecasting											
	M2	Annual work planning											
	М3	Supportive supervision											
	M4	iSC performance monitoring											

Conducting an EVM assessment by criteria

EVM <u>criteria assessed</u> at each supply chain level

- **Observation**
- Infrastructure
- **Records inspection**
- Staff interviews

Indicator scores are combined to give criterion scores for each area at each level

Select sites Assess Criteria Frailiage Indicators Combine scores

Select representative

sample of sites
at each level of the
supply chain

Inputs, process and performance indicators are evaluated in each area at each level

An area of vaccine management is considered 'Effective' if its criterion score is greater than or equal to 80%

Importance of EVM

Important to ensure that **EVM principles are implemented** at all levels of the immunisation supply chain

EVM training will allow vaccine distribution sites and health facilities to **identify shortcomings** in the immunisation supply chain

Improvement plans must be developed to address identified gaps before the next EVM assessment is conducted

PRINCIPLES OF OPTIMAL VACCINE STABILITY AND POTENCY

On successful completion of this module, you will be able to:

- 1. List the characteristics of vaccines as biological substances
- 2. Describe thermostability of vaccines and loss of potency
- 3. Describe the tools to monitor thermostability of vaccines
- 4. Understand vaccine reconstitution and the use of diluents
- 5. Understand the multi-dose vial policy

cometo

Mr Kesentseng Mahlaba

Thermostability of vaccines

Thermostability of vaccines refers to their ability to remain potent when stored within a given temperature range

Loss of potency due to exposure to heat, freezing conditions or light is cumulative, permanent, and irreversible

AKCP. Vaccine Cold Storage Rooms – How They Work and are Maintained. Blog.2020. https://www.akcp.com/blog/vaccine-cold-storage-rooms-how-they-work-and-are-maintained/

Cold chain

Series of coordinated tools and activities directed towards maintaining vaccine temperatures within stipulated ranges

Vaccines must generally not be exposed to freezing conditions

During transportation and storage, starting from production to the point of vaccination

Exceptions e.g. OPV which can be stored and distributed between -15 and -25°C

Optimal storage conditions and the expiry date determined during vaccine development

Cold chain management

Suspected freezing of vaccines

- If a freeze-sensitive vaccine is frozen solid, discard it immediately
- If there is concern that a freeze-sensitive vaccine
 - may have been exposed to freezing conditions; or
 - might have been frozen; or
 - there is an alarm on the freeze indicator

The shake test is **ONLY** applicable to **freeze-sensitive vaccines**

Report evidence of freezing to supervisors __

VACCINE ESTIMATION AND FUNDING

On successful completion of this module, you will be able to:

- 1. Understand all essential information to be captured on the stock management system
- 2. Ensure availability of adequate quantities of vaccines, diluents and relevant ancillary supplies
- 3. Avoid stock-outs to ensure uninterrupted immunisation services
- 4. Avoid overstocking and/or unnecessary expiration of vaccines and ancillary items before utilisation

come to Modul

Mr Kesentseng Mahlaba

Stock counts

Facilities must perform stock counts at least monthly Before placing vaccine orders, ensure that quantities on hand match balances reflecting on record **Check condition of vaccines**: expiry date; vaccine vial monitors; damages **Check type and quantities to order**; avoids over- and under-stocking → vaccine wastage and missed vaccination opportunities An inventory management system is used to estimate the vaccine needs of healthcare facilities

Vaccine estimation and forecasting

Vaccine estimates

Accurate vaccine estimates are essential to ensure vaccine availability at healthcare facilities and prevent missed vaccination opportunities

Vaccine forecasting

Vaccine estimates can be calculated using different methods including the size of the target population; or historic usage, also known as the consumption method; or on the immunisation session size

Vaccine wastage monitoring

- Indicates the cost-effectiveness of an immunisation programme
- Influenced by various factors that could be specific to the vaccine or the vaccinator
- Divided into
 - Unavoidable wastage in open vials
 - Avoidable wastage in unopened vials

VACCINE ARRIVAL AND INVENTORY MANAGEMENT SYSTEMS

On successful completion of this module, you will be able to:

- 1. Outline shipping of vaccines by a manufacturer and receipt by the national vaccine store or distributor
- 2. Describe the process of vaccine transportation to lower levels of distribution
- 3. Describe the vaccine receipt process at lower levels of distribution
- 4. Implement the guidelines for vaccine stock inspection and storage upon receipt at a facility
- 5. Describe vaccine inventory management at lower levels of distribution

relcome to Module

Ms Audrey Chigome

Shipping and receiving of vaccines from a manufacturer

Every shipment from vaccine manufacturers must reach the receiving store in a satisfactory condition and with the correct paperwork

Process of receiving vaccines from a manufacturer

- Critical stages in the shipping process
 - Arrival of a vaccine shipment in South Africa
 - Customs clearance
 - Transportation to the national store
- Effective communication and strict guidelines are essential at every step of the process

Recording of received vaccines at lower levels of distribution

Stock recording of incoming and outgoing stock, with details

of the quantity and specific characteristics

Accurate records are crucial

Accountability

Ensure correct quantities of vaccines are ordered

Good record keeping for vaccines helps to:

Monitor vaccine movement & consumption

Monitor stock availability & stock adequacy

Accurately identify stock on hand

Avoid stockouts & overstocking

!! REMEMBER

Manual stock cards are recommended as a **control** even where an electronic recording system is in place

STORAGE CAPACITY, BUILDINGS AND MAINTENANCE

On successful completion of this module, you will be able to:

- 1. Determine if storage capacity is sufficient to accommodate maximum stock requirements for routine immunisation and ancillary items, including supplementary immunisation activities when required
- 2. Describe good warehousing practices required to ensure compliance of vaccines store building
- 3. Identify reasons why regular maintenance of buildings, equipment and transport is important within the immunisation supply chain
- 4. Understand the roles and responsibilities of various departments to ensure maintenance of buildings, equipment and vehicles

alcome to mod

· · · Dr Mncengeli Sibanda

Vaccine storage capacity for the cold chain

Is there sufficient cold chain capacity throughout the immunisation supply chain?

Cold chain storage capacity is important for the immunisation program to operate efficiently

Vaccine storage capacity should be sufficient to accommodate maximum stock requirements

- Routine immunisation
- Supplementary immunisation activities

Enough dry storage capacity for the required ancillary items

Storage and distribution capacity so that required vaccines are kept at recommended temperatures at all levels of vaccine supply chain

Calculation of vaccine storage volume for a combination or front opening fridge

- To determine nett vaccine storage capacity, convert to the nett volume into liter (fridge)
 - To determine nett vaccine or ice pack storage capacity, convert to the nett volume into liter (freezer)

Maintenance of buildings, equipment and transport

Maintenance of buildings, equipment and distribution vehicles is **IMPORTANT**

COLD CHAIN EQUIPMENT AND CONTINGENCY PLANNING

On successful completion of this module, you will be able to:

- 1. List and describe the key issues of vaccine cold chain management including selecting and maintaining the appropriate cold chain equipment
- 2. Ensure temperature monitoring during vaccine storage and transportation to maintain vaccine effectiveness before use
- 3. Formulate contingency plans to protect the integrity of the vaccines in case of any cold chain failure

Jelcome to M

Dr Mncengeli Sibanda

Cold chain equipment

All equipment that maintain the required temperature during storage and distribution of thermolabile products including vaccines

To preserve their quality from the site of manufacture until their administration

An essential component of an effective immunisation supply chain and logistics system

Cold chain equipment must be reliable, well maintained and cost-effective

To ensure adequate and sustainable storage capacity for current and planned vaccines and supplies

To reduce maintenance requirements and running costs

Active and passive systems

Active cold chain systems

are externally or on-board powered, to maintain a temperaturecontrolled environment inside an insulated enclosure

> under thermostatic regulation

E.g., fridges, freezers, cold rooms and temperature-controlled trucks

Passive cold chain systems

maintain a temperaturecontrolled environment inside an insulated enclosure

> without thermostatic regulation

Using the required number of correctly prepared coolant packs

- Conditioned or frozen ice packs
 - Phase change materials
 - Dry ice or others

Vaccine distribution levels

Different levels within the national cold chain system require different types of equipment for transporting and storing vaccines and diluents within the required temperature range

Cold-chain equipment required at each level is dependent on the capacity required

Primary level Sub-national level Lowest distribution level

Walk-in cold or freezer rooms and/or freezers, fridges, passive containers, and in some cases, insulated unrefrigerated or refrigerated trucks are used

Throughout
all levels,
temperature
monitoring
devices and tools
must be used

Service point level

Fridges with or without freezing compartments, freezers and passive containers are needed

DISTRIBUTION AND TRANSPORT CAPACITY

On successful completion of this module, you will be able to:

- 1. Optimise transport capacity to meet maximum demand
- 2. Describe the process of route validation
- 3. Outline the process of coolant pack preparation and packing of cold boxes and vaccine carriers based on vaccines distributed
- 4. Explain transport contingency planning in case of emergencies during distribution

Jelcome to

Dr Mncengeli Sibanda

Efficient vaccine distribution

It is important to understand the heat and freeze sensitivity of every vaccine

A Standard operating procedure (SOP) for vaccine packing, distribution and training staff must be developed

Plan for and record the duration of the journeys and transport temperature profiles of all routes

In-country distribution of vaccines is a key supply chain link but often the weakest one

Distribution between each level in the supply chain is not always efficient

To avoid loss of potency, vaccines must be protected from exposure to excessively high or low temperatures during transport

Efficient vaccine distribution (2)

According to the South African Pharmacy Council's (SAPC)
Good Pharmacy Practice: Minimum requirements for
procurement, storage and distribution of thermolabile products

Vaccines **MUST** be distributed in such a way that they are:

- Secure
- Not subjected to unacceptable degrees of heat / cold
- Maintained to product specifications

Efficient vaccine distribution (3)

The transportation mode must have **sufficient capacity** to allow for orderly storage of vaccines during transportation

The temperature of the loaded area should be monitored with a continuous temperature monitoring device that meets **WHO specifications**

The passive container **MUST** contain a continuous temperature monitoring device to monitor temperature inside the passive container during distribution

Planned vaccine distribution system

A planned vaccine distribution system is essential for achieving three of the six "rights" of a supply chain:

- **☑** Right place
- **☑** Right time
- **☑** Right condition

All vaccines stored in the vaccine supply chain need:

- ✓ A distribution plan based on efficient route or delivery circuit planning
- ✓ A distribution schedule that is respected and monitored
- ✓ To ensure the distribution plan is followed as closely as possible

Distribution plan and delivery schedule is based on the knowledge of:

- ✓ When vaccines will arrive in the store and when they will leave
- ✓ How many vaccines will arrive in the store and how much will leave

Route validation

Route validation

Goal of route validation

Route optimisation

Risk scheduling

Entire process of
planning delivery
routes for delivery
 of the vaccines

Create the most costeffective route by:

- Minimising distance
 & travel time
- Minimising risks associated with transporting vaccines

Planning one or multiple routes, with the purpose of minimising overall costs, and cold-chain risks

Plan deliveries across

multiple locations,
routes, and drivers
based on time
constraints

Ensure timely execution
to accomplish key tasks
and fulfill all orders
within available
timeframes

All distribution points including depots should have a planned distribution schedule, and adherence to the plan MUST be monitored by comparing actual deliveries to planned deliveries

WASTE MANAGEMENT AND DISPOSAL

On successful completion of this module, you will be able to:

- 1. Identify the types of waste generated during vaccination services and their hazards
- 2. Demonstrate the safe collection of vaccination waste
- 3. Describe prescribed storage conditions for collected vaccine waste
- 4. Understand the requirements for the safe transportation of collected waste
- 5. Understand the requirements for the safe disposal of collected waste

acome to N

Dr Sophy Moloko

Vaccine waste hazards

"Community needle stick injury guidelines"

Children's Health Queensland Hospital and Health Service

Vaccine waste segregation

Minimises the quantity of infectious waste that needs special handling and treatment

Prevents the **mixture** of medical waste with general municipal waste

Vaccination waste must be segregated by category into appropriate colour bags/boxes or pharmaceutical bins at point of generation

Reduces the chance of spreading infection and/or causing injuries

Reduces the risks of exposure to hazardous healthcare waste for workers

Estimating volumes of used sharps

Importance of adequate safety boxes

Monthly quantity determination

Immunisation needs of population

Volume of syringes and needles

Number of 5-litre safety boxes per month for Catchment **100%** immunisation coverage **Population Crude Birth Rate** 15 30 35 10 20 25 1,000 - 5,0006,000 - 10,0003 5 11,000 - 15,0001 3 4 16,000 - 20,0002 6 6 4 2 21,000 - 25,0003 5 6 8 26,000 – 30,000 3 6 8 10 4

Important!
Each
vaccination
station should
have a
safety box

Therefore, for a catchment of 10,000 & and a crude birth rate of 20

We will need = 2 x 5-litre boxes

PROGRAMME MANAGEMENT AND SUPPORTIVE SUPERVISION

On successful completion of this module, you will be able to:

- 1. Identify and describe tools used to provide supportive supervision for immunisation programmes
- 2. Describe good practices for programme management of vaccines at different service levels
- 3. Describe the monitoring and evaluation processes for immunisation programmes
- 4. Develop and review standard operating procedures (SOPs) used in immunisation programmes
- 5. Understand the role of SOPs in quality management and employee training
- 6. Understand the importance of good record keeping and recording in immunisation programmes

acome to mod

Ms Audrey Chigome

Enhancing performance through supportive supervision

Standard Operating Procedures (SOPs)

The **goal** of the EVM initiative is to help countries to strengthen quality management practices

An **SOP** should be a well-focused document

A high standard of quality management is an essential element of effective immunisation service delivery

SOPs are written documents with detailed instructions for a specific activity

A major component is the systematic introduction and effective use of SOPs

QUALITY IMPROVEMENT PLANNING

On successful completion of this module, you will be able to:

- 1. List the pillars of a quality management system
- 2. Use a Challenge Model to identify challenges and achieve a desired measurable result
- 3. Conduct a root cause analysis
- 4. Develop a quality improvement plan (QIP)
- 5. Monitor progress towards achieving a desired measurable result for quality improvement

Welcome to M

Prof Hannelie Meyer

What is a quality improvement plan (QIP)?

Purpose of immunisation supply chain QIP

- Build an evidence-based case for national immunisation supply chain investments
- Develop an improvement plan that engages stakeholders
- Setting immunisation programme on a path to success

- Strategic and including wide set of stakeholders
- Designed to reveal root causes of supply chain problems
- Mobilise human and financial resources to address them
- QIP is based on evidence and programming logic

EVM QIP approach

Quality improvement tools used in cIP

Process mapping

Also known as flow diagram
Useful for analysing the system
and identifying gaps

5

Challenge Model

Helps to carefully diagnose where you want to go and where you currently are before you decide on a plan of action

5 Whys

Approach to analyse and identify possible causes of the problem

Plan-Do-Study-Act (PDSA) or Plan-Do-Check-Act (PDCA)

Improvement cycle to try out, test, and implement improvements

Assess, Plan, Implement & Monitor EVM model's cIP

Cause-and-effect or Fishbone analysis

May assist in analysing possible causes

MISSION (of the organisation)

VISION (of the organisation)-

MEASURABLE RESULT

(the required result)

Obstacles & Root
Causes

Identify and list obstacles and root causes

Priority Actions

Identify and list priority actions

CHALLENGE

Continuous improvement plan: UNICEF tool

- WHO-UNICEF EVM assessment process = similar approach to PDSA cycle of quality improvement
- During the EVM assessment, critical areas that need to be improved are identified, if the required score of 80% is not obtained
- Facility can identify the areas within the immunisation supply chain that need to be improved to ensure safe and effective vaccines are available
- Facility can then develop a QIP to address the identified shortcomings
- Commitment to continuous improvement within the immunisation supply chain is required

CACKNOWLEDGEMENTS / Development of course materials

Module development and internal moderation

Department of Public Health Pharmacy and Management

South African Vaccination and Immunisation Centre

Sefako Makgatho Health Sciences University

External moderation

Expanded Programme on Immunisation

United Nations Children's Fund South Africa

ACKNOWLEDGEMENTS

Funding for the project

The United Nations Children's Fund

The Government of Japan

From the People of Japan