Advanced HIV Disease in Children

Dr Lisa Frigati Tygerberg Hospital Stellenbosch University

Advanced HIV Disease in Children and Adolescents

- What do we mean by advanced HIV in children?
- How does this differ from adults?
- Burden of advanced disease in children
- Guidance and examples

A case from yesterday..

- Almost 3- month old girl presented to G-Ground at Tygerberg
- Weight -3.8kg, Birth weight 2.9kg
- DC from HHH at D2 of life
- Mom=29 years G4P2.. 2 previous early infant deaths at 4 months and 3 months, last vl-26 in 2021, CD4 157, restarted ART 1 week prior to delivery.. VL at delivery pending
- Birth PCR sent and pending when baby dc, on AZT and NVP
- Breastfeeding
- Went for health visit 6/52 post-partum at Ikhwezi Clinic

Advanced HIV Disease in Children and Adolescents -Which of these children have advanced HIV disease?

A) 3 months with severe pneumonia and CD4 count >25%

B) 6 week growing well on +1 Z-score, CD>30%, asymptomatic, diagnosed during a PMTCT visit

C) 2 year with moderate malnutrition and CD4 >25%

D) 7 year on ART that presents with sores around the mouth

E) 10 years with TB

WHO guidelines for Managing Advanced HIV Disease and Rapid Initiation of ART 2017

- Advanced HIV disease is defined as CD4 count <200 cells/mm3 or WHO clinical stage 3 or 4 in children > 5years of age
- All children <5 years old considered to have advanced disease
- Evidence that "packaged interventions" for advanced disease reduces mortality: REMSTART and REALITY

Management of advanced HIV disease

A package of interventions including screening, treatment and/or prophylaxis for major opportunistic infections, rapid ART initiation and intensified adherence support interventions should be offered to everyone presenting with advanced HIV disease.

(Strong recommendation, moderate-quality evidence)

CD4% in infants with HIV

Probability of Death Within 12 Months

WHO Staging and immunological classification

- Stage 1: The child is generally well (asymptomatic).
- Stage 2: Skin rashes and "minor" infections.
- Stage 3: More serious infections.
 PTB, Oral thrush, CLD, FBC abnormalities
- Stage 4: OI, Cancer, Permanent organ damage due to HIV virus

SEVERITY	AGE		
	<12 Months	13-59 Months	5 + Years
None	>35%	>25%	>500 Cells/mL
Mild	25-34%	20-24%	350-499 Cell/mL
Advanced	20-24%	15-19%	200-349 Cells/mL
Severe	<20%	<15%	<200 Cells/mL

Advanced HIV disease

Clinical Staging

- Stage 1: The child is generally well (asymptomatic).
- Stage 2: Skin rashes and "minor" infections.
- Stage 3: More serious infections. PTB, Oral thrush, CLD, FBC abnormalities
- Stage 4: OI, Cancer, Permanent organ damage due to HIV virus

Advanced disease

	Clinical	CD4
> 5 years	All	All
< 5 years	3 and 4	< 200 cells

Causes of mortality in HIV+ adults and children admitted to hospital

		Overall (95% CI)
Adults		
AIDS related		57% (46-68)
Tuberculosis		27% (20-34)
Toxoplasmic encephalitis		15% (10–20)
Cryptococcal meningitis		13% (9–16)
Pneumocystis pneumonia		13% (7-19)
AIDS malignancies	★	6% (4-7)
Bacterial	→	23% (17-30)
Bacteraemia		19% (12–25)
Bacterial pneumonia		17% (8-26)
Neurological	→	8% (5-12)
Respiratory	→	9% (2-16)
Liver	◆	6% (4-8)
Children		
AIDS related	•	56% (30-81)
Tuberculosis		30% (11-49)
Pneumocystis pneumonia		29% (5-52)
Bacterial infections	↓	36% (3–70)
Bacteraemia		9% (0-18)
Bacterial pneumonia		31% (6-56)
Diarrhoea*	•	23% (3-43)
Malnutrition/wasting*	←	15% (7-22)
	0 10 20 30 40 50 60 70 80 90 Prevalence (%)	

Figure 4: Causes of mortality in HIV-positive adults and children admitted to hospital Dotted lines show specific conditions within categories. *Data from the Africa region only.

Ford et al. Lancet HIV 2015

Mortality in children with HIV

Mortality risk among children < 5 years old living with HIV on ART

PEPFAR data

- CLHIV < 1 y on ART were more likely to die compared to PLHIV on ART 5-14 y CMR 7.6
- CLHIV 1-4 y on ART were also more likely to die compared to those 5-14 y (CMR 4.2, range 2.9-5.0),
- Average VLS among CLHIV < 1 and CLHIV 1-4 y were 78% and 72%, respectively, compared to 84%, 94%, and 96% of those 5-14, 15-49 and ≥50y

Morbidity in children living with HIV

Hospitalization among infants who initiate antiretroviral therapy before 3 months of age

- Infants that started ART <3 months in Western Cape, SA 2013-2017
- 840 infants <3 months
- 69% hospitalized
- 36% more than 1 hospitalization
- 41% lower respiratory tract infection
- 23% gastroenteritis

Ongoing High Prevalence of Severe Immune Suppression Among Children in South Africa

Anderson et al AIDS 2023 37:435-445 Patten et al J Acquir Immune Defic Syndr. 2023

Definition of advanced disease in children: further articulated in 2020 technical brief

TECHNICAL BRIEF - JULY 2020

PACKAGE OF CARE FOR CHILDREN AND ADOLESCENTS WITH ADVANCED HIV DISEASE: STOP AIDS

Unitaic

Children > 5 years:

• WHO stage 3 or 4 or a CD4 cell count <200 cells/mm3

Children < 5 years:

- have advanced HIV disease
- "Although children younger than five years are defined as having advanced disease at presentation, those who have been receiving ART > 1 year and who are clinically stable should not be considered to have advanced disease and should be eligible for multi-month dispensing"

Box 1. Screen, Treat, Optimize and Prevent AIDS

Screen

- Screen for TB using a clinical algorithm^b followed by X-ray when indicated and if available Use the following diagnostic tests to confirm TB as applicable:
- Rapid molecular diagnostic (Xpert® MTB/RIF or Ultra) on (induced) sputum, stool, gastric aspirate or nasopharyngeal aspirate or other extrapulmonary samples if relevant Lateral flow urine lipoarabinomannan (LF-LAM) assay^d

Cryptococcal infection among adolescents

Serum or plasma or blood cryptococcal antigen screening followed by lumbar puncture if positive or symptomatic

Malnutrition

- Weight-for-height
- Height-for-age
- Mid-upper arm circumference among children 2-5 years old

Treat

TB, severe pneumonia, severe bacterial infections, cryptococcal meningitis and severe acute malnutrition according to WHO guidelines

Optimize

Rapid antiretroviral therapy start - within seven days with optimal regimens* Antiretroviral therapy counselling

* Screening refers to screening and diagnostics throughout this publication.
* See Fig. 3 in Guidance for national tuberculosis programmes on the management of tuberculosis in children (9) A negative test result does not exclude TB in children living with HIV in whom there is a strong clinical suspicion of TB. d See Table 2 and the text for recommendations. Unless TB or cryptococcal disease is diagnosed (10).

Addressing advanced HIV disease

Screen

For TB, cryptococcal disease

Treat

For TB, cryptococcal disease, severe pneumonia and blood stream infections

Optimize

Early ART initiation within 7 days, optimal regimen, counselling

Prevent

TB, PJP, cryptococcus, pneumonia and catch-up immunizations

We need to Stop AIDS!

Challenges

Research Gaps

Frigati LJ et al. Journal of the International AIDS Society 2023, 26:e26041 http://onlinelibrary.wiley.com/doi/10.1002/jia2.26041/full | https://doi.org/10.1002/jia2.26041

COMMENTARY

The hard part we often forget: providing care to children and adolescents with advanced HIV disease

- How many children die after discharge and how many are readmitted?
- Ultimate package of care not only at start but post discharge
- Diagnostics
- Treatment do we have the right dose of valganciclovir?
 - appropriate antibiotics for resistant bacterial organisms
 - fixed dose combinations with ethambutol
- Prevention TB vaccine, optimal TPT regimens including FDCs, prevention of bacterial infections beyond cotrimoxazole

Case 1

Age: 4 month old

Gender: male

Family circumstance: born before arrival, mom booked late in pregnancy, 2-day history of cough, blocked nose and fast breathing **Not known to be HIV positive**

Clinical examination

Tachypnoeic SC and IC recession Crackles bilaterally hepatosplenomegaly

Questions

- 1. How would you manage this child further
- 2. What antibiotics if any would you start?
- 3. Does this child have advanced hiv disease
- 4. What strategies could have prevented this child from becoming so ill
- 5. What options do you have if the child has low saturations? (Discuss supplemental oxygen and non-invasive ventilation)

- **S** early diagnosis of HIV, PJP and CMV diagnostics?
- **T** high dose cotrimoxazole, valganciclovir, prednisone, antibiotics, CPAP, invasive ventilation
- **O** early ART start
- **P** vaccinate on ART, cotrimoxazole, TPT

Key challenges

Early diagnosis of difficult to reach women and infants

Access to non-invasive ventilation like CPAP Treatment – access to valganciclovir, steroids Often unable to make a definitive Diagnosis of PJP but treat for polymicrobial pneumonia

Case 2: 18 month boy with chronic diarrhoea, malnutrition and fever

Clinical Evaluation and Current Challenges

Clinical presentation

Not wanting to play

Cold

Rash

Not eating

Add weight height

Weight: 8.34kg Height:73.3cm MUAC: 13.5 cm

Questions

- 1. How would you manage this child further-Would you start antibiotics, if yes what empiric antibiotic therapy?
- 2. When would you start ART?
- 3. Does this child have advanced HIV disease
- 4. What strategies could have prevented this child from becoming so ill

The Unwell Child 1–5 years old

Severe bacterial infection

- Older studies show high rates of bacteraemia in first 3 months on ART
- More recently 6% of children admitted with HIV and malnutrition had a +BC on admission
- HAIs :gram negative and ESBL

Tuberculosis

Malnutrition/Diarrhoea

- WHO 10 steps
- RCTs in SA children showed a short delay in ART initiation resulted in faster viral suppression and improved immune recovery
- Study from Kenya can start in 48 hrs
- ART initiation within 7 days

Archary M et al. J Pediatr Infect Dis Soc. 2020. Archary M et al Paediatr Int Child Health. 2017;37(1):6-13. Njuguna IN etal. Lancet HIV 2018

S – screen for malnutrition and TB, access to blood microscopy, culture and sensitivity.

- **T** appropriate antibiotics, electrolyte management, fluid therapy, WHO 10 steps, rapid ART initiation
- **O** ongoing adherence counselling, social worker intervention
- **P** social interventions

Case 3: 11-year-old "well" boy

- Diagnosed in March 2021 at an OUTPATIENT clinic as had lost some weight
- Mom was unaware of her diagnosis
- His CD4 was 220 cells/mm³
- Screened for TB CXR normal, sputa gene Xpert and culture negative
- Started ART April 2021, no TPT
- Presented at clinic in May 2021 with vomiting, no fever or other clinical signs

Questions

- 1. How tests would you request?
- 2. What could be happening?
- 3. Does this child have advanced hiv disease?
- 4. What strategies could have prevented this child from becoming so ill?

Case 3

CSF findings:

- Glucose 0.5
- Protein 1.53
- P=0 L=348 E=0
- Cryptococcal antigen negative
- Gene X-pert positive !
- Started on tuberculous meningitis therapy

Case 4

- 10-year-old boy weight, 24kg
- DX HIV In August 2022, started ART 5 days later
- CD4 count 7
- Also diagnosed with Rif mono resistant TB started on levofloxacin, bedaquilline, linezolid, clofazimine, terizidone October 2022
- Treated for eosophageal candida for 3 weeks with oral fluconazole in November
- Seizures in December 2022..
- Presented to our clinic in December 2022 in a wheelchair, with headache and vomiting.. Was supposed to attend our MDR TB clinic but got lost and attended HIV clinic

Questions

- 1. How tests would you request?
- 2. What could be happening?
- 3. Does this child have advanced hiv disease?
- 4. What strategies could have prevented this child from becoming so ill?

- LP CSF: L= 66, protein marginally raised, glucose 2.5, culture positive for cryptococcus neoformans
- CT brain: multiple tuberculomas, no hydrocephalus
- December VL = LDL

Cryptococcal Disease

https://www.youtube.com /@sharecm

Which of these children have advanced HIV disease?

- <u>Question 1-</u>
- Which of these children has advanced HIV disease
- <u>A) 3 months with severe pneumonia and CD4 count >25%</u>
- <u>B) 6 week growing well on +1 Z-score, CD>30%, asymptomatic, diagnosed during a PMTCT visit</u>
- <u>C) 2 year with moderate malnutrition and CD4 >25%</u>
- D) 10 yearl old with TB
- E) all of the above

- Question 2-
- The definition of advanced HIV disease in children is:
- A) any child with HIV less than 5 years old and any child older than five years with CD4 <200 or WHOStage 3 or 4 disease
- <u>B) all children less than 10 regardless of CD4 count</u>
- <u>C) All children less than 5 and must have CD4 count less than 200</u>
- D) Any child older than 5 with a CD4 count of less than 500

• Question 3:

In HIV-exposed or HIV infected infants less than 6 months that present with severe pneumonia the following is the recommended (if available in your setting)

- A) High dose cotrimoxazole, ampicillin, gentamicin, ganciclovir
- B) Ampicillin and gentamicin
- C) <u>Ampicillin gentamicin and amphotericin B</u>
- D) Bactrim and ganiciclovir only
- E) Bactrim prophylaxis and ampicillin, gentamicin, ganciclovir

- Question 4
- The most common cause of mortality in children < 5 years with HIV in our setting is
- A) Cryptococcal meningitis
- B) <u>Candida</u>
- C) **Bacterial infections**
- D) <u>TB</u>
- E) gastroenteritis
- •

- Question 5;
- Which of the following statements regarding cryptococcal disease in children is the most correct
- A) fluconazole for 4 weeks is the best treatment
- B) flucytosine is readily available at all clinics
- <u>C) cryptococcal meningitis is rare in children younger than 5 years of age</u>
- <u>D) children don't get cryptococcal meningitis</u>

Conclusions

- Children and Adolescents can present with AHD in many ways
- We already have a package of care that we can implement BUT
- Advanced disease is not just PJP, TB, CMV and cryptococcal disease
- Children with HIV can be at risk at any point- even if on ART for a long time
- We need more than ART

